

Urban Geography

Crisis as Catalyst, Infrastructure as Legacy: Post-pandemic Governance by Data Infrastructure and the Quiet Rewriting of Democracy

Submission ID	265194621
Article Type	Research Article
Keywords	regulatory data infrastructures, governance by data infrastructure, digital identity, facial recognition technology, normative foundations of democracy
Authors	Stefania Milan

For any queries please contact:

RURB-peerreview@journals.tandf.co.uk

Note for Reviewers:

To submit your review please visit <https://mc.manuscriptcentral.com/rurb>

1
2
3
4 **Crisis as Catalyst, Infrastructure as Legacy: Post-pandemic Governance *by* Data**
5 **Infrastructure and the Quiet Rewriting of Democracy**
6

7 **Stefania Milan**
8 **Department of Media Studies, University of Amsterdam**
9 **&**
10 **Florence School of Transnational Governance, European University Institute**
11

12 Address:
13 Department of Media Studies
14 University of Amsterdam
15 Turfdraagsterpad 9
16 1012XT Amsterdam, The Netherlands
17

18 Email: s.milan@uva.nl
19

20 ORCID: 0000-0002-9314-2889
21

22 LinkedIn: <https://www.linkedin.com/in/stefania-milan/>
23

1
2
3
4
Abstract

5 Crises have long acted as catalysts for institutional change, reshaping how power is organized
6 and exercised across territories, jurisdictions, and urban spaces. In this vein, the COVID-19
7 pandemic prompted the rapid deployment of digital tools for public health, safety, and efficiency,
8 while serving as a beta-testing ground for new modes of urban governance. This article examines
9 the deployment and afterlives of digital infrastructures introduced in Europe under conditions of
10 crisis. It asks how COVID-era data infrastructures reshape democratic governance in cities and
11 how their normalization recalibrates the normative foundations of democracy.
12

13 Dialoguing with critical data studies, urban geography, digital sociology, and democratic theory,
14 the article develops the concepts of *regulatory data infrastructures* and *governance by data infrastructure* to
15 trace how emergency technologies become durable fixtures of public administration and urban
16 governance. Empirically, it draws on two pandemic-accelerated domains—digital identity
17 systems and facial recognition in urban public space—as illustrative cases for theory
18 development. Based on desk research, it shows how these systems reorganize state–citizen
19 relations through spatialized practices of visibility, classification, and automation, and how they
20 subtly rework democratic norms by embedding data-driven rationalities and private actors into
21 everyday urban governance, thereby reshaping democracy from within the city.
22

23
24 **Keywords**

25 regulatory data infrastructures, governance by data infrastructure, digital identity, facial
26 recognition technology, normative foundations of democracy
27
28
29

30 **1. Introduction: The COVID-19 Crisis as Institutional Catalyst**

31 At a Schengen border crossing in late 2025, non-European Union (EU) travelers step up to new
32 self-service kiosks. Instead of a passport stamp, the EU's Entry/Exit System (ESS) records their
33 fingerprints and facial image, adding another entry to a database that will track their movements
34 for years (European Commission's Directorate-General for Migration and Home Affairs, 2025).
35 Originally promoted as part of a broader turn to contactless border controls during the COVID-
36 19 pandemic, biometric checks have now become routine infrastructure for governing mobility
37 in Europe (eu-LISA, 2021). The emergency language has faded, but the systems remain, quietly
38 reorganizing the everyday encounter between traveler and state.
39

40 Crises and emergencies have long functioned as catalysts for institutional change (Beckett, 2013).
41 Mobilized as a technique of liberal governance (Anderson et al., 2019) and a diagnostic category
42 for understanding the present (Roitman, 2013), crises expose the limits of existing governance
43 arrangements while creating openings for (or even foreclosing) institutional and policy
44 innovation. The COVID-19 pandemic (2019–2023), caused by severe acute respiratory
45 syndrome coronavirus 2 (SARS-CoV-2), was no exception. As the first pandemic to unfold
46 under conditions of advanced datafication—marked by the pervasive transformation of social
47 life into machine-readable data—COVID-19 not only exposed the limits of existing approaches
48 to societal governance but also reconfigured the very means through which crisis governance
49 was enacted. It functioned as an “all-encompassing stress-test of the cultural assumptions and
50 foundations of society as a whole” (Milan & Di Salvo, 2020). It prompted the rapid deployment
51 of data-centric digital tools, often powered by Artificial Intelligence (AI), to govern public health,
52 social interaction, and urban mobility. Dashboards monitoring infection rates, wearable medical
53 devices, contact-tracing apps, biometric systems like thermal cameras, vaccination certificates,
54 and predictive analytics were rolled out at speed, frequently under conditions described as
55 “innovation under pressure” (Newlands et al., 2020). In this context, concerns over privacy,
56

1
2
3
4 accountability, and democratic scrutiny were often temporarily suspended in favor of efficiency,
5 safety, and problem-solving capacity (Kitchin, 2020).
6
7

8 While many of these measures were framed as exceptional and temporary, their afterlives often
9 tell a different story. Although most national contact-tracing applications in Europe—such as
10 Germany's *Corona-Warn-App* or Italy's *Immuni*—were decommissioned or placed in “hibernation”
11 after the acute phase of the pandemic, the digital infrastructure underpinning them has persisted.
12 For example, the Google/Apple Exposure Notification (GAEN) framework, which provided
13 the proximity-tracking protocols for many European apps (Autoriteit Persoonsgegevens, 2020),
14 remains embedded within dominant smartphone operating systems and continues to be
15 maintained, constituting a durable technological substrate that can be rapidly reactivated at need.
16
17

18 This persistence reflects a form of infrastructural inertia, whereby crisis-built capacities are
19 retained and rendered available for redeployment beyond their original purpose. In some cases,
20 such redeployment occurred already during the pandemic itself. In both Singapore (Sato, 2021)
21 and Germany (Pannett, 2022), data collected through contact-tracing applications were
22 subsequently shared with law enforcement for crime prevention or investigation, contradicting
23 earlier privacy guarantees (cf. Liu, 2021). Together, these cases illustrate how emergency digital
24 infrastructures can exceed their original scope and become normalized within everyday
25 governance, extending exceptional powers into the ordinary. Similar dynamics unfolded across
26 other domains of pandemic governance, including the regulation of access and movement in
27 cities.
28

29 A telling example is the expansion of QR-code–based access control systems. Technologies
30 initially introduced during the pandemic to regulate entry to public venues such as restaurants,
31 workplaces, and transport hubs, were rapidly scaled up to monitor compliance with health and
32 safety measures. Beyond their immediate regulatory function, QR codes became woven into
33 everyday urban routines, functioning as “public placemaking practices” shaping how access,
34 presence, and legitimacy in space were negotiated (Davies et al., 2023). As with ESS, what began
35 as an extraordinary response to an emergency thus contributed to the consolidation of data-
36 driven infrastructures of rule. The pandemic operated as a large-scale beta-testing ground for
37 governance innovations that now persist beyond the emergency context, embedding data-driven
38 rationalities into core state functions.
39

40 This article offers a conceptual and theoretical analysis of the introduction and afterlives of
41 crisis-induced data-centric interventions in the European context. Using pandemic-accelerated
42 digital identity systems and facial recognition in urban public space as illustrative cases for theory
43 development, and drawing on desk research, it examines how data-intensive infrastructures
44 deployed during the pandemic have reshaped urban governance and state–citizen relations. It
45 asks how the normalization of these infrastructures recalibrates the normative foundations of
46 democracy as they become entrenched in everyday municipal administration and spatial
47 regulation. Rather than treating these tools as discrete technologies, the article foregrounds their
48 infrastructural and institutional effects, showing how emergency-driven digitalization and
49 automation reconfigure accountability, participation, equality, and the rule of law through the
50 governance of mobility, access, and visibility in the city.
51

52 To address these questions, the article advances two conceptual lenses—*regulatory data*
53 *infrastructures and governance by data infrastructure*—using the COVID-19 pandemic as a case through
54 which to further specify these concepts. Situated at the intersection of critical data studies, digital
55 sociology, and urban geography, with selective engagement with democratic theory, it traces how
56 crisis-driven infrastructures become durable components of urban governance, and how
57 democracy itself is quietly rewritten from within urban space.
58
59

The article is organized as follows. First, it outlines the conceptual framework by introducing working definitions of regulatory data infrastructures and governance by data infrastructure, and by reflecting on crises as catalysts for institutional transformation and their consequences for democratic norms. Second, it presents the research approach. Third, it introduces the two empirical domains used to illustrate the claims. Finally, foregrounding the social costs of these two technologies, the article analyzes the shift from technology-centered interventions to institutional change in post-pandemic European democracy and reflects on the implications of this transformation for democratic quality and norms.

2. Conceptual Framework: Data, Crisis, and Democratic Governance

This article departs from the observation that technologies introduced to manage an extraordinary situation like the coronavirus pandemic became domesticated as routine instruments of public administration and spatial management, contributing to the consolidation of what can be described as governance by data infrastructure—with tangible consequences for urban governance and for democracy more broadly. This section outlines the analytical lenses underpinning the article, introduces its conceptual contribution, and situates them within broader debates on emergency governance and democratic norms.

Analytical Lenses for Data-Driven Urban Governance

This article dialogues primarily with critical data studies, digital sociology, and urban geography, seen as three complementary traditions concerned with how data-driven technologies reorganize power, space, and governance. Together, they enable an analysis of data-intensive digital systems as sociotechnical arrangements—configurations in which technological artefacts, institutional practices, and political rationalities are jointly produced (Bijker, 1997)—that reshape institutional practices and everyday life, particularly in the urban environment, where infrastructures, populations, and governance intersect most visibly.

Critical data studies (Dalton et al., 2016; Kitchin, 2025) foreground the social and political consequences of datafication and automation, emphasizing how data-driven systems encode values, redistribute authority. This perspective draws attention to the “politics of” data infrastructures across their life course, highlighting tensions between deployment, stabilization, and post-crisis normalization (Ruppert et al., 2017). Digital sociology (Marres, 2017) focuses on how technologies are enacted in practice and how, through everyday arrangements, they organize participation and accountability and become incorporated into social institutions and routines (Lupton, 2015). In this article, it contributes to understanding how citizen agency is constituted in relation to the structural logics of both technological systems and state institutions. Finally, urban geography adds a crucial spatial and infrastructural perspective by treating cities as key sites of experimentation, scaling, and normalization of governance arrangements, including surveillance (Graham & Marvin, 2001; McFarlane, 2021). It centers infrastructural power (Easterling, 2016) and the governance of circulation across the urban environment (Wig & Wyly, 2016). From this multidisciplinary vantage point, the digital tools examined here can be seen as sociotechnical infrastructures of urban ordering: (politically contested) systems that materialize data-driven rationalities through everyday practices, embed themselves within state and urban institutions, and reorganize the governance of mobility, visibility, access, and public space.

Within this framework, the article advances two closely connected analytical concepts, namely *regulatory data infrastructures* and *governance by data infrastructure*, developed to capture emerging modes of crisis-induced, data-driven governance.

1
2
3
4 Regulatory data infrastructures are combinations of software, hardware, standards, institutional
5 arrangements, and social practices through which data are generated and operationalized to
6 exercise regulatory power (Milan, 2024a). They increasingly take up functions once performed by
7 public authorities and human decision-makers, including population monitoring, public safety,
8 access to services and rights, and administrative decision-making. Here, regulatory power refers
9 to the capacity to govern conduct by embedding rules, norms, and decision logics into
10 infrastructures that monitor, classify, and intervene in social life. Exercised through data-driven
11 systems rather than exclusively through law or policy, this form of regulatory power shapes how
12 individuals and populations are rendered (in)visible, governable, and actionable within
13 institutional and spatial arrangements. In this respect, it operates through what Isin and Ruppert
14 term “sensory power”: the ability of “detecting, identifying, and making people sense-able”
15 through infrastructural means (Isin & Ruppert, 2020, p. 2). Simultaneously, it functions as a
16 modality of governmentality (in the Foucauldian sense), through which power is exercised via the
17 coordination of knowledge, infrastructure, and administrative routines rather than overt coercion
18 (Rahman et al., 2024)—though not without social costs.
19

20
21 Governance *by* data infrastructure refers to a broader mode of governing in which regulatory
22 data infrastructures become the preferred means for managing complexity (Milan, 2024b). It is
23 characterized by reliance on real-time data generation and analysis, automated processes, and
24 anticipatory logics (Aradau & Blanke, 2017), alongside the growing penetration of private
25 vendors—who develop and operate regulatory data infrastructures—into state institutions,
26 including welfare, security, and urban management. In this context, regulatory power is
27 increasingly operationalized through system architectures rather than articulated through
28 deliberative or territorially bounded forms of rule (Yeung, 2017). This reflects “a shift toward a
29 special form of design-based governance, with power exercised *ex ante* via choice architectures
30 defined through protocols, requiring lower levels of commitment from governing actors”
31 (Gritsenko & Wood, 2020, p. 1). As a result, regulatory authority is often embedded in technical
32 arrangements that bypass routinized checks and balances, weakening democratic accountability
33 and the capacity for public contestation. Typically forged under emergency conditions, this mode
34 of governance tends to outlast the crises that gave rise to it, becoming embedded in everyday
35 administrative routines.
36

37 ***Crisis, Emergency Logics, and Infrastructural Change***

38 Crises point to “overwhelming situations and elements of urban life that individuals and societies
39 are forced to cope with everyday” (Dimitrakou & Ren, 2025, p. 2). They are not merely external
40 shocks but critical turning points that expose the limits of existing modes of regulation and
41 knowledge: “moments of truth” that evoke a moral demand for a break between past and future
42 (Roitman, 2013). They create conditions under which new forms of governance—today more
43 often than not infrastructural and data-driven—can be rapidly introduced and stabilized. In this
44 sense, crises operate as both openings and closures for institutional innovation, lowering barriers
45 to technological and policy adoption. Under conditions of radical uncertainty, governing
46 rationalities shift from managing what is probable to anticipating what is possible, privileging
47 surveillance, prediction, and automation as means of navigating risk (Aradau & Van Munster,
48 2011; Beck, 1992). Crises may also legitimize intensified surveillance and the delegation of public
49 functions to private actors (Lyon, 2022). Measures introduced as temporary responses to
50 exceptional circumstances often persist, becoming normalized within administrative routines and
51 infrastructural arrangements (Agamben, 2005), thereby extending emergency governance into
52 routine urban administration.
53

54 Crises are discursively constructed and politically mobilized through narratives that frame
55 situations as requiring immediate action, and renew the authority of policymakers to intervene
56
57
58
59
60

1
2
3
4 decisively (Rahman et al., 2024). While such narratives help mobilize resources and focus
5 attention, they do so at the expense of complexity (Roe, 1995), narrowing the range of legitimate
6 responses and privileging solutions that are readily actionable. Crisis narratives also have a
7 performative function: when confronted with “mega hazards” that escape established
8 institutional practices of administrative management, institutions continue to act as if they are in
9 control (Mythen & Walklate, 2016, p. 405).
10

11 The coronavirus pandemic functioned as a large-scale testing ground for an unprecedented
12 digitalization of the social sphere (Yan, 2020), spearheading data-centric governance and
13 accelerating the consolidation of this infrastructural mode of governing. COVID-19 crisis
14 narratives activated emergency logics and “states of exception” that suspended or reordered
15 established political and legal safeguards (Pellizzoni, 2020), thereby legitimizing rapid techno-
16 solutionist interventions. These interventions foregrounded techno-infrastructure fixes while
17 sidelining democratic deliberation and constraining public scrutiny (Bigo, 2020; Milan, 2020). At
18 the same time, the crisis lowered thresholds for both the adoption and social acceptance of such
19 fixes by reframing privacy trade-offs as necessary or unavoidable (Madianou, 2020).
20

21 Cities emerged as privileged sites for experimentation, scaling, and normalization, as municipal
22 authorities mobilized regulatory data infrastructures, including pandemic technologies such as
23 QR codes, thermal cameras, and facial recognition systems, to manage circulation, enforce health
24 measures, and render populations legible in real time. In doing so, these infrastructures reordered
25 visibility, mobility, and access, embedding emergency rationalities into the everyday governance
26 of urban space and populations, with particularly severe consequences for marginalized
27 communities within racialized assemblages, as well as for the urban poor, informal economy
28 workers, older adults, and people with disabilities (for a selection of case studies, see Milan,
29 Treré, et al., 2021; Mukogosi, 2021; Pelizza et al., 2021).
30

31 Fast forward to today, the institutionalization of crisis-driven regulatory data infrastructures in
32 European post-pandemic democracy marks a shift from discrete technological interventions to a
33 more enduring mode of governance by data infrastructure, with consequences that extend well
34 beyond efficiency or effectiveness. These developments transform not only the modalities of
35 governance, but also the democratic norms through which such arrangements are assessed and
36 contested—raising questions about the normative foundations of democratic governance.
37

38
39 ***Democratic Norms at Stake?***

40 Democracies depend not only on formal institutions (e.g., parliaments and legal frameworks) but
41 also on shared informal norms (i.e., unwritten conventions guiding behavior and practices in
42 democratic societies) that constrain the exercise of power (Levitsky & Ziblatt, 2018). The
43 normative foundations of democracy refer to the fundamental standards, ethical principles, and
44 values that define how democracy should function, including equality, justice, civil liberties,
45 political participation, public deliberation, and the rule of law. Together, these foundations
46 provide a framework for assessing whether a political system or decision is democratic and fair,
47 while shaping expectations about how power is distributed and exercised in a democratic society
48 (cf. Dahl, 1998; Diamond & Morlino, 2004; Rawls, 1999).
49

50 In crises, these norms are particularly vulnerable, as governments tend to expand executive
51 authority and intensify domestic surveillance, among other exceptional measures (Scheppel, 2004). When emergency responses are operationalized through data-driven
52 infrastructures, these often become embedded in administrative routines and material
53 arrangements that are difficult to contest or reverse. In this way, crisis-induced infrastructural
54
55

1
2
3
4 governance recalibrates democratic norms by reshaping how accountability is exercised, how
5 participation is organized, and how rights are mediated in practice.
6
7

8 Much like the incorporation of AI into state machinery (Allen & Weyl, 2024), governance by
9 data infrastructure alters the normative foundations of democracy not through overt institutional
10 reform but through incremental shifts in how power is exercised, mediated, and legitimized.
11 Rather than replacing democratic institutions—or constituting the “end of government” (Araya,
12 2019)—data infrastructures increasingly operate within them, reworking core democratic norms
13 as decision-making, classification, and enforcement are inscribed into sociotechnical systems.
14 These transformations extend beyond formal guarantees to reshape the informal conventions
15 and expectations through which democratic life is enacted, reworking everyday state–citizen
16 relations and raising questions about state sovereignty.
17
18

19 **3. Methodological Note**

20 This article adopts a qualitative, theory-driven research and primarily conceptual design. It
21 mobilizes digital identity systems and facial recognition in urban public space, both expanded
22 during the pandemic, as illustrative sites for theory development. These sites are used analytically
23 to refine and substantiate the article’s conceptual argument, illustrating how governance by data
24 infrastructure materializes in practice and how crisis-induced digital interventions acquire
25 institutional afterlives. They are not treated as full-fledged empirical case studies, but as
26 analytically generative examples that help trace the normalization of data-intensive infrastructures
27 and their implications for democratic norms in urban governance.
28
29

30 The analysis draws on desk research, including analysis of policy, advocacy, media, and industry
31 material released in the period 2019–2025, to examine how data-driven technologies are framed,
32 justified, and gradually institutionalized over time, surfacing, among others, the rationales
33 accompanying their deployments.
34

35 **4. Domain I: Digital Identity Systems**

36 Digital identity (ID) systems refer to digital infrastructures designed to verify and authenticate
37 individuals through software-based processes, typically without direct human involvement at the
38 point of verification. They are commonly built upon registration procedures linked to official
39 credentials (e.g., national ID cards or passports) and may incorporate biometric authentication
40 mechanisms such as fingerprints or iris scans. They are often promoted as balancing data security
with portability and interoperability, enabling identities to be reused across institutional contexts.
41
42

43 In democratic systems, digital identity infrastructures play a central mediating role by governing
44 access to both public and private services. They condition interactions with government
45 institutions, including access to healthcare, welfare provision, taxation, and education, while also
46 increasingly serving as gateways to commercial services such as banking and insurance. In this
47 sense, digital identity systems do more than record or represent identity: they perform acts of
48 certification and denial, linking individuals to opportunities, entitlements, and forms of
49 participation, while simultaneously excluding those who cannot be verified or authenticated. As
50 such, they constitute a key site where regulatory power—specifically the state’s power of
51 classification (Cheesman, 2022)—is exercised through infrastructural means.
52
53

54 Examples include nationwide systems such as the publicly operated Dutch DigiD (digid.nl), the
55 Italian *Sistema Pubblico di Identità Digitale* (spid.gov.it, which, contrary to its name, is operated by
56 accredited contractors in exchange for a fee), the Swedish BankID (bankid.com, a banking-sector
57 system requiring users to be customers of a participating bank), and India’s Aadhaar
58 (uidai.gov.in). At the supranational level, efforts to establish a unified digital ID infrastructure are
59
60

underway in the EU through the proposed EU Digital Identity Wallets (EUDI), envisioned as interoperable infrastructures enabling citizens to prove their identity and credentials across member states (European Commission, 2021). Commercially issued initiatives, supported by multilateral organizations like the World Bank's Identification for Development programme or public-private partnerships like ID2020 (with Microsoft and Accenture, among others), promote digital identification as the basis for service delivery in a response to inefficient public administrations in developing countries (Center for Human Rights & Global Justice, 2022).

Digital identity infrastructures vary substantially in their design and governance, ranging from publicly operated systems to privately intermediated, commercially supported, and hybrid arrangements, and may be introduced through administrative rollout, executive decree, or parliamentary debate (Lawani et al., 2026). These systems support a wide range of uses. They are often linked to biometric technology, such as fingerprint identification, in the administration of voting rights—a practice prevalent in many developing countries, particularly in Africa (Passanti, 2025). Digital ID infrastructures are also used by state entities and humanitarian organizations to manage refugees and migration flows (Schoemaker et al., 2020). During the COVID-19 pandemic, the scope expanded further through vaccination certificates, which linked identity verification to public health status and conditioned access to services and public spaces (Milan, Taylor, et al., 2021).

In fact, while digital identity solutions predated COVID-19, the pandemic accelerated their adoption and institutionalization by creating practical pressures and political justifications, especially where physical access to services was limited. According to industry reporting, 72 percent of online marketplaces adopted identity verification systems during the first seven months of the pandemic alone (“COVID-19 Driving an Acceleration in Adoption of Identity Verification,” 2020). Governments likewise intensified their engagement with digital ID infrastructures. In Canada, for instance, the pandemic created what observers described as “the right conditions for excuses to be removed” (Nardi, 2020), prompting policymakers to pilot and expand digital identity solutions as part of broader digital government strategies (Government of Canada, 2023). Similarly, the European Commission advanced plans for EUDI, framing it as essential infrastructure for secure access to services and cross-border mobility in a post-pandemic digital single market (European Commission, 2021).

5. Domain II: Facial Recognition Technologies

Automated facial recognition technology is a form of biometric identification that enables “identifying people with machines” (Breckenridge, 2014). It works by establishing a probabilistic link between bodily features, most commonly the human face, and images stored in databases such as passport or social security registries. As an AI application, facial recognition relies on machine learning models trained on large datasets to detect and compare selected facial markers, producing likelihood scores rather than definitive identifications. This probabilistic logic is central to both the appeal and, as we shall see, the democratic risks of the technology.

Although facial recognition technologies were already diffusing prior to COVID-19, the pandemic accelerated their expansion in urban public space and beyond (Van Natta et al., 2020). For example, US schools used facial recognition software to scan foreheads for elevated temperatures and detect when students aren’t wearing masks (Barber, 2020); across the world, “proctoring” software relying on facial recognition and environment monitoring was adopted by universities worldwide to invigilate exams (Swauger, 2021). More broadly, systems that had previously been tested through limited pilots were rapidly scaled up and deployed in strategic sites of public assembly—transport hubs, conference centers, concert halls, and football stadiums—to monitor compliance with health and safety measures. Often, facial recognition was

combined with thermal scanning technologies, justified by emergency logics of risk management. As the crisis subsided, these systems were folded into routine forms of spatial regulation, where they continue to be used for surveillance, security, and population management.

In urban contexts, facial recognition today is mainly used to grant access to spaces or services, such as access control or payment systems. In Europe, typical deployment scenarios include transport hubs, where facial recognition is used to authenticate passengers; schools, where it is used at entrances or for cashless payments; and squares to monitor passers-by (Christakis et al., 2022; Solarova et al., 2023; Kayali, 2023). But the technology is also well integrated into everyday policing practices: it is central to the EU Prüm II framework regulating automated data exchange for police cooperation (European Parliament, 2024), although the AI Act has introduced limits to its adoption in public space, including prohibitions on “the untargeted scraping of facial images from the internet or CCTV footage” and on certain forms of emotion inference (Article 5, EU Artificial Intelligence Act, 2025).

Facial recognition technologies thus provide a critical lens on how regulatory data infrastructures quietly reconfigure the boundaries of acceptable state intervention in public space. They foreground how emergency logics can legitimize intrusive forms of data-driven governance, how temporary measures become embedded in routine administrative practices, and how citizens are positioned, often retrospectively, in relation to infrastructures that profoundly affect rights, freedoms, and participation in democratic life.

6. The Quiet Rewriting of Democracy: From Technology to Institutional Change

This section advances the core argument of the paper: crises function as catalysts for institutional change, and that what may appear as infrastructural transformation in fact signals a deeper reconfiguration of democratic governance. To substantiate this claim, the following section examines the social costs of two pandemic-accelerated regulatory data infrastructures—that is, how harms are experienced by individuals and social groups—and then extends to the analysis of democratic harms, understood as the effects these technologies have on democracy as a system. In-between, this part of the paper reflects on the role of crises in this process.

The Social Costs of Regulatory Data Infrastructures

Across both empirical domains, the quiet rewriting of democracy materializes through a set of recurring social costs. These costs are not incidental side effects but arise from how regulatory data infrastructures condition access, redistribute power, and reorganize everyday encounters between citizens and the state.

a. Conditional Inclusion and Exclusion

Regulatory data infrastructures reconfigure inclusion and exclusion by conditioning access to rights, services, and public space on successful identification and authentication. In the case of digital identity systems, individuals lacking documentation, digital literacy, or reliable connectivity, or whose data are inaccurate, incomplete, or contested, risk exclusion from essential services, often reinforcing existing inequalities (Masiero, 2024). Pandemic vaccination certificates illustrate how identity infrastructures can operate performatively, producing real-time distinctions between legitimate and illegitimate access and transforming public health status into a gatekeeping mechanism for social participation (Milan, Taylor, et al., 2021). As urban scholarship on smart governance suggests, such data-driven systems tend to produce conditional and uneven forms of urban citizenship, amplifying existing social hierarchies by making marginalized residents selectively visible, governable, or excludable within digital infrastructures (Datta, 2018).

1
2
3
4 Facial recognition technologies enact similar dynamics through spatialized forms of
5 identification. Their technical functioning is marked by well-documented problems of accuracy
6 and bias, undermining the democratic principle of equality before the law. Because these systems
7 rely on measurements between selected facial points rather than holistic analysis, errors are
8 structurally embedded and unevenly distributed across populations. Biased training datasets have
9 repeatedly resulted in higher misidentification rates for racialized and marginalized groups, as
10 well as gender non-conforming individuals, producing differentiated exposure to surveillance and
11 sanction (Buolamwini & Gebru, 2018). A Dutch university, for instance, was accused of
12 discriminating against non-White students through its proctoring software (Damen, 2022). In
13 both domains, inclusion becomes conditional upon machinic legibility, with profound
14 consequences for social participation and recognition.
15

16 **b. Scope Creep and Functional Expansion**

17 Once established for a limited purpose, regulatory data infrastructures are prone to scope creep:
18 they are extended to new domains, linked to additional datasets, or repurposed for functions
19 beyond their original mandate (Center for Human Rights & Global Justice, 2022). As these
20 expansions unfold, infrastructures introduced as temporary or exceptional measures often solidify
21 into durable institutional arrangements, frequently without renewed democratic debate, robust
22 oversight, or meaningful opportunities for citizen contestation. In the case of digital identity
23 systems, this process is often mediated through municipal platforms, smart city infrastructures,
24 and service delivery systems, incrementally embedding identification into everyday practices of
25 urban governance and intensifying forms of surveillance urbanism. What begins as an
26 administrative convenience or emergency measure thus becomes a routine feature of
27 governance.
28

29 Facial recognition technologies display similar patterns of functional expansion. Initially framed
30 as experimental or exceptional tools, they have been progressively normalized across urban
31 management contexts, security, and policing, a development critics have linked to the
32 “reinvention of suspicion and discretion” in law enforcement (Fussey et al., 2021). Notably, this
33 normalization has sometimes occurred despite well-documented performance limitations. In
34 London—one of the earliest urban adopters—live facial recognition was deployed via CCTV
35 cameras even though early evaluations reported an accuracy rate of only 19 percent (Fussey &
36 Murray, 2019). Taken together, these cases illustrate how emergency-driven technological
37 experimentation translates into enduring infrastructures of governance, exemplifying function
38 creep whereby provisional measures become embedded institutional practices.
39

40
41 **3. Diminished Accountability and Contestability**

42 Regulatory data infrastructures also raise fundamental concerns about accountability and
43 contestability. As rules, classifications, and access decisions are encoded into technical systems
44 and delegated to software-mediated processes, opportunities for oversight, redress, and
45 democratic deliberation are curtailed. Inclusion, exclusion, and verification are increasingly
46 enacted through infrastructural arrangements that are difficult to interrogate or contest,
47 particularly where private vendors and transnational actors play a central role in system design
48 and operation. As Madianou (2019, p. 10) observes, such systems risk “ossify[ing] discrimination
49 by turning soft data into a permanent, ‘scientific’ record that is hard to contest.”
50

51 In the domain of facial recognition, accountability is further weakened by automation bias,
52 whereby human operators defer to algorithmic outputs even when these conflict with their own
53 judgment (Gebru, 2020). This deference shifts authority from accountable public officials to
54 opaque technical systems, undermining transparency, due process, and avenues for redress in
55 high-stakes decision-making contexts. Moreover, facial recognition enables forms of
56

1
2
3
4 “generalized, population-level monitoring” (Andrejevic & Selwyn, 2020), chilling the exercise of
5 fundamental democratic rights such as freedom of expression, assembly, and dissent. Through
6 continuous identification and tracking, urban public space risks being transformed from a site of
7 civic encounter into a zone of anticipatory compliance, reshaping the relationship between
8 citizens and the state (Andrejevic & Selwyn, 2022).
9

10 The contested nature of these infrastructures underscores these accountability gaps. Digital
11 identity systems have been challenged for their intrusiveness, as in Aadhaar’s biometric
12 authentication (Chaudhuri & König, 2018), and for design choices—such as those underpinning
13 the EUDI framework—that raise concerns about fairness, privacy, security, and stakeholder
14 input (Royo, 2025). These vulnerabilities are not merely theoretical. In 2025, the bid by the US
15 firm Kyndryl to acquire the Dutch company Solvinity, which operates the platform underpinning
16 DigiD, sparked public debate in the Netherlands over digital dependency, sovereignty, and
17 infrastructural vulnerability (“Dutch Governments Caught off Guard by American Tech Firm
18 Buying Dutch Cloud Company,” 2025). Similarly, in the context of facial recognition, the
19 normalization of these systems has equated “arsenic in the water supply of democracy” (Sample,
20 2019) by the British non-profit Liberty, and prompted growing public criticism and mobilization,
21 including the EU-wide *Reclaim Your Face* campaign (reclaimmyface.eu) and calls for a ban by
22 Amnesty International on the ground that it “amplifies racist policing” (2021).
23

24 The social costs associated with regulatory data infrastructures are not merely distributive or
25 technical side effects; they constitute the pathways through which democratic harms take shape.
26 Exclusion from services, heightened surveillance, and the opacity of automated decision-making
27 are experienced unevenly across social groups, yet their cumulative effect is systemic. As these
28 costs become embedded in routine governance, they normalize unequal access to rights, weaken
29 mechanisms of accountability and redress, and reshape participation along infrastructural lines.
30 In this sense, social costs operate as the everyday manifestation of deeper democratic harms,
31 translating infrastructural change into durable transformations of democratic life. This
32 reconfiguration takes place through the gradual sedimentation of crisis-induced infrastructures,
33 quietly rewriting democratic governance from within.
34

35
36 ***Negotiated Afterlives of Crisis Infrastructures: From Crisis to Institutional Change***

37 A central mechanism through which this quiet rewriting unfolds is crisis-driven digitalization. A
38 report by civil society organizations has denounced the expansion of executive powers and the
39 suspension of the rule of law during the COVID-19 pandemic, noting that these developments
40 have been accompanied by an intensification of security protocols and the rapid scaling of
41 surveillance technologies, with implications for fundamental rights (European Center for Not-
42 For-Profit Law et al., 2022). Across both empirical domains, this critique resonates with the
43 persistence of infrastructures introduced as temporary, exceptional, and ostensibly proportionate
44 responses to the pandemic, which have endured well beyond their initial justification.
45

46 The infrastructural inertia of facial recognition technology offers a particularly instructive
47 illustration of how promises of temporariness and proportionality tend to unravel in practice.
48 Framed as a tool for efficiency and control (Security Industry Association, 2023), once
49 established the technology generates institutional dependencies, sunk costs, and political
50 incentives for reuse and expansion. While European advocates—most notably those united
51 under the umbrella of *Reclaim Your Face*—have contributed to the gradual emergence of new
52 vocabularies of fairness, rights, and democratic control, these efforts also expose persistent blind
53 spots regarding the broader social costs of infrastructural governance. Both media outlets and
54 policymakers tend to emphasize modernization and innovation, frequently amplifying industry
55 marketing while sidelining concerns about exclusion, discrimination, and chilling effects. The
56

1
2
3
4 installation of thermal facial recognition cameras in the Olympic Stadium in Rome in 2021, for
5 instance, was publicly celebrated as a “symbolic moment” and “the light at the end of the
6 tunnel” for the country as a whole (Bianchi, 2021).
7

8 These dynamics are particularly visible in urban governance, where crisis-driven systems are
9 most likely to be introduced and subsequently normalized. Cities have long functioned as key
10 sites for experimentation with data-driven governance, with urban management increasingly
11 organized around data collection, platformization, and real-time monitoring (Wiig, 2015). In this
12 context, regulatory data infrastructures operate not merely as administrative tools but as
13 spatialized instruments of power, shaping how urban populations are seen, sorted, and governed.
14 As Pickren (2016) argues, power in data-driven cities circulates through infrastructural
15 assemblages rather than residing in single institutions or actors. Crisis infrastructures such as
16 digital health certificates and facial recognition systems become embedded in these assemblages,
17 intersecting with transport systems, policing practices, and public–private partnerships. Their
18 negotiated afterlives reconfigure urban governance by redistributing authority across municipal
19 agencies, technology vendors, and security actors, while simultaneously constraining the capacity
20 of urban residents to contest—or even opt out of—these infrastructural forms of regulation.
21 This dynamic is evident in cases such as Como (Italy), where the local administration unlawfully
22 deployed facial recognition cameras, sponsored by the Chinese firm Huawei, across parks,
23 stations, and squares (Carrer et al., 2020). In this sense, the afterlives of crisis infrastructures
24 reveal how urban governance becomes a privileged site for the quiet rewriting of democracy: a
25 domain where exceptional measures sediment into routine practices, where democratic norms
26 are enacted through spatialized data systems, and where the cumulative effects of infrastructural
27 governance become most acutely felt—particularly in the configuration of state–citizen relations.
28
29

30 ***From Technologies to State–Citizen Relations***

31 Across both empirical domains, governance increasingly operates through data-intensive
32 infrastructures that make citizens visible, classifiable, and “actionable” in ever more
33 comprehensive ways. Visibility is produced through continuous data capture; classification
34 through algorithmic categorization of identity, risk, and eligibility (Bowker & Star, 1999); and
35 automation through the delegation of regulatory functions to computational systems (Bellanova
36 & de Goede, 2020). Individuals and groups that are remain illegible to these infrastructures—
37 think of undocumented migrants (Pelizza et al., 2021)—become the new “data poor”, effectively
38 excluded from rights claims and forms of political recognition (Milan & Treré, 2020).
39

40 These shifts do not merely optimize existing practices; they reshape how state authority is
41 exercised and experienced, *altering the terms on which citizens encounter the state* in at least two ways. At
42 a basic level, this concerns the channels through which state–citizen interaction is organized. As
43 advocate Denis Royo (2025) notes with respect to EUDI, “The motivation behind EUDI is that
44 of achieving strategic autonomy for our public and social services, but its realization goes in the
45 opposite direction, effectively putting in the hands of mobile OS [Operating System]
46 manufacturers core interaction channels with the institutions governing our society”.
47 Infrastructure design choices matter, since “by changing the design of the networks (...), its
48 politics are affected—the balance of rights between users and providers” (Musiani, 2013).
49 Millimeter wave scanning, a biometric-adjacent technology used in airport security checks,
50 exemplify the downstream effects of this dynamic: systems optimized around binary, gendered
51 body-shape assumptions tend to flag non-binary individuals as deviant, with such deviations
52 interpreted within security logics as potential risk indicators (Costanza-Chock, 2018). Yet the
53 implications of these developments extend well beyond questions of access and interface design.
54
55
56
57
58
59
60

1
2
3
4 On the one hand, democratic systems are not optimized for infrastructural mediation, and we
5 lack adequate processes and tools to contend with decisions taken seemingly independently by
6 technology itself. This becomes particularly problematic when state–citizen relations are no
7 longer mediated primarily through law, discretion, and face-to-face interaction, but increasingly
8 through system architectures, databases, and automated decision-making (Hintz et al., 2018).
9 Infrastructural mediation often entails greater opacity in decisions affecting individuals and
10 increased difficulty in seeking redress, as data infrastructures obscure how decisions are made
11 and where responsibility lies (Eubanks, 2018).
12

13 On the other hand, infrastructural mediation subtly reconfigures the balance between trust,
14 control, and accountability that underpins democratic governance. Trust and control are
15 redistributed both within the state and beyond it, since regulatory data infrastructures are often
16 developed and operated by private contractors. Accountability is thereby weakened, since forms
17 of “regulation by contract” (cf. Bygrave, 2015) introduce actors that fall outside established
18 democratic mechanisms of oversight and control, such as parliamentary oversight and electoral
19 processes.
20

21 Trust nonetheless plays a central role in the justificatory narratives surrounding these systems. In
22 the documents reviewed for this research, the EUDI framework is consistently presented as a
23 means to enhance trust and security for e-commerce and e-government (European Commission,
24 2021). This framing reveals a paradox: the state reasserts itself as provider and guarantor of trust
25 vis-à-vis the market, yet does so through infrastructures largely supplied by private actors.
26 Framed as a “trust framework”, EUDI positions the state as an intermediary between citizens
27 and third parties, while effectively displacing trust from institutional relationships onto technical
28 systems. Crucially this shift is not limited to state–citizen relations; it signals a broader epistemic
29 transformation of the state itself.
30

31 ***Political Rationalities and Epistemic Transformation***

32 The expansion of regulatory data infrastructures reflects and reinforces *shifts in political rationalities*,
33 reshaping how public problems are framed, which solutions are imagined and appear legitimate,
34 and how authority exercised in practice. As regulatory capacity becomes anchored in
35 technocratic expertise, governance priorities are increasingly shaped by infrastructural
36 dependencies and expert systems, constraining political discretion and deliberation (cf. Friedman,
37 2019). This dynamic aligns with the predominant “smartness” agenda, whereby technical
38 expertise, automated systems, and performance metrics come to dominate governance,
39 narrowing the space for political deliberation and alternative problem framings (Mitchell and
40 Halpern 2023).
41

42 Facial recognition technologies—described by privacy advocates as “inhumane” (Reclaim Your
43 Face, 2020)—offer a concrete illustration of these shifts. Rather than responding to identified
44 violations, such systems continuously scan and classify individuals to anticipate potential risks.
45 Decisions rely on probabilistic matches, confidence thresholds, and risk scores, meaning that
46 intervention is justified by what systems predict might occur rather than what has occurred.
47 Hence, suspicion becomes embedded in infrastructure, and authority is exercised through
48 technical systems that claim legitimacy based on predictive accuracy and operational efficiency.
49

50 These dynamics are especially visible where facial recognition is integrated into digital identity
51 infrastructures. Here, access to rights, services, or transactions depends on automated identity
52 verification processes that rely on probabilistic assessments rather than documentary evidence or
53 human judgment. Identity is no longer established at discrete moments through legal or
54 administrative procedures, but is continuously inferred through systems designed to prevent
55 administrative procedures, but is continuously inferred through systems designed to prevent
56

1
2
3
4 fraud. As a result, regulatory data infrastructures privilege anticipation, risk management, and
5 optimization in everyday governance (see also Aradau & Blanke, 2022), reshaping not only
6 formal decision-making but also informal democratic norms such as transparency, reason-giving,
7 and contestability. Taken together, these dynamics point to a longer-term transformation of
8 democratic life, conceptualized here as democratic harms.
9

10 ***Democratic Harms of Regulatory Data Infrastructures***
11

12 Evaluated against core democratic norms, regulatory data infrastructures generate a set of
13 interrelated democratic harms that cut across both digital ID and facial recognition technologies.
14

15 First, *accountability is displaced and diffused* as regulatory functions are delegated to data
16 infrastructures designed, maintained, or operated by private actors, obscuring lines of
17 responsibility. Decisions are increasingly enacted through system architectures, automated
18 routines, and vendor contracts rather than through transparent legal or deliberative processes. As
19 a result, citizens and public officials alike may struggle to identify who is responsible for
20 decisions affecting rights, access, or mobility, weakening mechanisms of democratic oversight
21 and redress. Nissenbaum (1996) already diagnosed this erosion of accountability as a structural
22 consequence of delegating consequential functions to computerized systems, pointing to
23 difficulties in attributing moral responsibility across multiple actors, the normalization of
24 software error, the treatment of computers as moral agents, and the reluctance of industry actors
25 to accept liability.
26

27 Second, *participation is reconfigured from a political practice into a managed input*. Data-driven systems
28 tend to privilege forms of engagement that are measurable, extractable, and compatible with
29 computational logics, while sidelining modes of contestation, dissent, and deliberation that resist
30 datafication. Participation thus risks becoming procedural rather than political, reinforcing
31 asymmetries between those who design and operate infrastructures and those governed through
32 them. Debates around India's Aadhaar system, for example, highlight concerns that such systems
33 may depoliticize state–citizen relations by shifting “from inclusive citizenship of political subjects
34 to exclusive citizenship of consumers” (Chaudhuri & König, 2018, p. 128).
35

36 Third, *equality is challenged through practices of classification and differential treatment* (Benjamin, 2019).
37 Regulatory data infrastructures produce categories of risk, eligibility, and compliance that often
38 reproduce existing social inequalities while presenting outcomes as neutral or objective (see also
39 Pelizza, 2020). These effects are particularly pronounced in urban contexts, where infrastructures
40 intersect with racialized, classed, and spatialized forms of governance, amplifying unequal
41 exposure to surveillance and control.
42

43 Finally, *the rule of law is reworked* rather than eroded. Regulatory power migrates from legal texts
44 and institutions to infrastructural arrangements, where norms such as legality, proportionality,
45 and due process are enacted through code, standards, and system design, often outside
46 established legal safeguards. The intermediation of private vendors further constitutes to the “de
47 facto privatization” of public functions (Braman, 2006, p. 318), raising fundamental questions
48 about transparency, contestability, and democratic legitimacy, the evolution and potential erosion
49 of state sovereignty. Conceiving data-driven systems as institutions helps to clarify how this
50 reworking of the rule of law occurs. As Mendonça et al. (2023) argue, algorithmic systems do not
51 merely implement legal rules but actively structure norms, obligations, and permissions through
52 technical design.
53

54 Taken together, these dynamics support the core claim of this article: the introduction of
55 regulatory data infrastructures does not produce a sudden democratic rupture, but instead
56

incrementally recalibrates how democratic norms are enacted in practice. Because these transformations rarely take the form of explicit institutional reform, they are often difficult to detect. Rather, they unfold through the gradual reconfiguration of informal democratic norms, reshaping how accountability is exercised, how participation is organized, how equality is operationalized, and how the rule of law is enacted in everyday governance. As the preceding analysis has shown, crisis-driven expansions of digital identity and biometric infrastructures rework access, accountability, and rights by embedding rules, classifications, and decision logics into routine administrative practices. Democratic erosion, where it occurs, is thus cumulative and uneven, sedimented in the normalization of infrastructural governance rather than produced by sudden or spectacular institutional change—often justified in the language of technical necessity, administrative efficiency, or crisis response.

7. Conclusions: Infrastructures of Crisis as Infrastructures of Rule

Through a cross-disciplinary analysis, this article has examined the afterlives of crisis-induced digital interventions, understood as sociotechnical infrastructures of urban ordering, to show how measures introduced as temporary and exceptional become normalized and institutionalized over time. Focusing on digital identity and facial recognition as illustrative empirical domains, the analysis demonstrates how crises function as catalysts for durable infrastructural change, enabling the rapid deployment of data-driven systems that would likely have faced greater contestation under ordinary conditions. These developments contribute to a broader shift toward governance by data infrastructure, with uneven and lasting effects across urban populations.

Rather than treating digital ID and facial recognition systems as discrete technologies or policy tools, the article approached them as regulatory data infrastructures that reconfigure relations between the state and its citizens. Even as their immediate crisis-related functions receded, the infrastructures and practices they introduced were not dismantled but instead normalized and repurposed within routine forms of urban governance and spatial regulation. Far from merely optimizing administrative capacity, governance by data infrastructure reshapes how accountability is exercised, how participation is organized, how rights are mediated, and how inequalities are produced and distributed in the city.

What may appear as an infrastructural intervention—often framed in terms of efficiency, modernization, or improved service delivery—thus entails a deeper institutional transformation in which confidence in systems substitutes for political trust in institutions. Authority increasingly migrates from deliberative and legally articulated processes to data-driven forms of regulation embedded in system architectures. In this sense, infrastructures introduced during crises do not merely support governance; they become infrastructures of rule, reorganizing democratic governance through practices of visibility, classification, and automation while operating largely below the threshold of explicit institutional reform. Because these changes unfold incrementally, they often recede into the background of democratic life, quietly recalibrating accountability, participation, and equality.

By foregrounding these dynamics, the article reframes regulatory data infrastructures not merely as objects of regulation but as *de facto* political institutions in their own right—*institutions* that encode norms, allocate authority, and structure decision-making. This perspective moves beyond system-level concerns with fairness or bias to advance a systemic critique of how data-driven governance reshapes democracy from within.

Ultimately, safeguarding democracy in the digital age requires attention not only to moments of crisis but to the long-term trajectories and afterlives of crisis-induced infrastructures. This raises

a broader political question that extends beyond the cases examined here: who defines democracy in a data-driven society, and through which infrastructures is that definition enacted?

Acknowledgments

I thank the organizers of the workshop “Crisis-driven Digitalization and its Afterlives in Urban Governance”—Ola Söderström and Petter Törnberg, together with Sophie Oldfield, Jennifer Barella, and Saskia Geyling—held at the University of Neuchâtel on 28 May 2025 and funded by the Swiss National Science Foundation. I also acknowledge the Chair in AI and Democracy at the School of Transnational Governance of the European University Institute, held by Prof. Daniel Innerarity, of which I am a member, for the valuable discussions that informed this work.

Declaration of interest statement

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. This work is supported by ERC grant DATAGOV, Grant No. 101142006.

References

Agamben, G. (2005). *State of exception*. Chicago University Press.

Allen, D., & Weyl, E. G. (2024). The Real Dangers of Generative AI. *Journal of Democracy*, 35(1), 147–162. <https://doi.org/10.1353/jod.2024.a915355>

Amnesty International. (2021, January 26). *Ban dangerous facial recognition technology that amplifies racist policing*. <https://www.amnesty.org/en/latest/press-release/2021/01/ban-dangerous-facial-recognition-technology-that-amplifies-racist-policing/>

Anderson, B., Grove, K., Rickards, L., & Kearnes, M. (2019). Slow emergencies: Temporality and the racialized biopolitics of emergency governance. *Progress in Human Geography*, 44(4), 621–639. <https://doi.org/10.1177/0309132519849263>

Andrejevic, M., & Selwyn, N. (2020, January 23). Facial recognition technology and the end of privacy for good. *Lens*. <https://lens.monash.edu/@politics-society/2020/01/23/1379547/facial-recognition-tech-and-the-end-of-privacy>

Andrejevic, M., & Selwyn, N. (2022). *Facial Recognition*. Policy Press.

Aradau, C., & Blanke, T. (2017). Politics of prediction: Security and the time/space of governmentality in the age of big data. *European Journal of Social Theory*, 20(3), 373–391. <https://doi.org/10.1177/1368431016667623>

Aradau, C., & Blanke, T. (2022). *Algorithmic Reason. The New Government of Self and Others*. Oxford University Press.

Aradau, C., & Van Munster, R. (2011). *Politics of Catastrophe: Genealogies of the Unknown*. Routledge.

Araya, D. (2019, January 4). Artificial Intelligence And The End Of Government. *Forbes*. <https://www.forbes.com/sites/danielaraya/2019/01/04/artificial-intelligence-and-the-end-of-government/>

Autoriteit Persoonsgegevens. (2020, October). *Google/Apple Exposure Notification framework*. https://www.edps.europa.eu/sites/default/files/publication/panel2-20201021_ap_on_gaen_publicvklos.pdf

Barber, G. (2020, March 11). Schools Adopt Face Recognition in the Name of Fighting Covid. *Wired*. <https://www.wired.com/story/schools-adopt-face-recognition-name-fighting-covid/>

Beck, U. (1992). *Risk Society: Towards a New Modernity*. Sage.

Beckett, G. (2013). The Politics of Emergency. *Reviews in Anthropology*, 42, 101–185.

1
2
3
4 Bellanova, R., & de Goede, M. (2020). The algorithmic regulation of security: An infrastructural
5 perspective. *Regulation & Governance*, 16(1), 102–118. <https://doi.org/10.1111/rego.12338>

6 Benjamin, R. (2019). *Race After Technology*. Polity Press.

7 Bianchi, F. (2021, April 13). *Europei a Roma, c'è l'ok del Governo: "All'Olimpico con il 25% del*
8 *pubblico."*
9 https://www.repubblica.it/sport/calcio/nazionale/2021/04/13/news/europei_a_roma_c_e_l_ok_del_governo_figc_gravina_notizia_splendida_-296325592/?ref=search

10 Bigo, D. (2020, June 3). Covid-19 tracking apps, or: How to deal with a pandemic most
11 unsuccessfully. *About: Intel. European Voices on Surveillance*. <https://aboutintel.eu/covid-digital-tracking/>

12 Bijker, W. E. (1997). *Of Bicycles, Bakelites, and Bulbs. Toward a Theory of Sociotechnical Change*. MIT
13 Press.

14 Bowker, G. C., & Star, S. L. (1999). *Sorting Things Out. Classification and Its Consequences*. MIT Press.

15 Braman, S. (2006). *Change of state: Information, policy, and power*. MIT Press.

16 Breckenridge, K. (2014). *Biometric State: The Global Politics of Identification of Surveillance in South*
17 *Africa, 1850 to the Present*. Cambridge University Press.

18 Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in
19 Commercial Gender Classification. *Proceedings of the 1st Conference on Fairness, Accountability*
20 *and Transparency*, 81, 77–91. <https://proceedings.mlr.press/v81/buolamwini18a.html>

21 Bygrave, L. (2015). *Internet Governance by Contract*. Oxford University Press.

22 Carrer, L., Coluccini, R., & Di Salvo, P. (2020, June 9). Perché Como è diventata una delle prime
23 città in Italia a usare il riconoscimento facciale. *Wired*.
24 <https://www.wired.it/internet/regole/2020/06/09/riconoscimento-facciale-como/>

25 Center for Human Rights & Global Justice. (2022). *Paving a Digital Road to Hell? A Primer on the*
26 *Role of the World Bank and Global Networks in Promoting Digital ID*. NYU School of Law.

27 Chaudhuri, B., & König, L. (2018). The Aadhaar scheme: A cornerstone of a new citizenship
28 regime in India? *Contemporary South Asia*, 26(2), 127–142.
29 <https://doi.org/10.1080/09584935.2017.1369934>

30 Cheesman, M. (2022). Self-Sovereignty for Refugees? The Contested Horizons of Digital
31 Identity. *Geopolitics*, 27(1), 134–159. <https://doi.org/10.1080/14650045.2020.1823836>

32 Christakis, T., Bannelier-Christakis, K., Castelluccia, C., & Métayer, D. (2022). *Mapping the Use of*
33 *Facial Recognition in Public Spaces in Europe*. Université de Grenoble Alpes.

34 Costanza-Chock, S. (2018). *Design Justice, A.I., and Escape from the Matrix of Domination*.
35 <https://jods.mitpress.mit.edu/pub/costanza-chock?version=c5860136-8a6c-424b-b07c-9c8c071615b0>

36 COVID-19 driving an acceleration in adoption of identity verification. (2020, October 14). *The*
37 *Paypers*. <https://thepaypers.com/digital-identity-security-online-fraud/covid-19-driving-an-acceleration-in-adoption-of-identity-verification--1245131>

38 Dahl, R. A. (1998). *On democracy*. Yale University Press.

39 Dalton, C. M., Taylor, L., & Thatcher, J. (2016). Critical Data Studies: A Dialog on Data and
40 Space. *Big Data & Society*, January-June, 1–9. <https://doi.org/10.1177/2053951716648346>

41 Damen, F. (2022, December 9). Mensenrechtencollege: Discriminatie door algoritme voor het
42 eerst 'aannemelijk', VU moet tegendeel bewijzen. *De Volkskrant*.
43 <https://www.volkskrant.nl/nieuws-achtergrond/mensenrechtencollege-discriminatie-door-algoritme-voor-het-eerst-aannemelijk-vu-moet-tegendeel-bewijzen~b66c072e/>

44 Datta, A. (2018). The digital turn in postcolonial urbanism: Smart citizenship in the making of
45 India's 100 smart cities. *Transactions of the Institute of British Geographers*, 43(3), 405–419.
46 <https://doi.org/10.1111/tran.12225>

47 Davies, H., Hjorth, L., Andrejevic, M., Richardson, I., & DeSouza, R. (2023). QR codes during
48 the pandemic: Seamful quotidian placemaking. *Convergence*, 29(5), 1121–1135.
49 <https://doi.org/10.1177/13548565231160623>

1
2
3
4 Diamond, L., & Morlino, L. (2004). The Quality of Democracy: An Overview. *Journal of*
5 *Democracy*, 15(4), 20–31. <https://doi.org/10.1353/jod.2004.0060>

6 Dimitrakou, I., & Ren, J. (2025). Critical geographies of everyday crisis. *City*, 1–19.
7 <https://doi.org/10.1080/13604813.2024.2447688>

8 Dutch governments caught off guard by American tech firm buying Dutch cloud company.
9 (2025, November 12). *NL Times*. <https://nltimes.nl/2025/11/12/dutch-governments-caught-guard-american-tech-firm-buying-dutch-cloud-company>

10 Easterling, K. (2016). *Extrastatecraft. The Power of Infrastructure Space*. Verso.

11 EU Artificial Intelligence Act. (2025, February 2). *Article 5: Prohibited AI Practices* [Online post].

12 Eubanks, V. (2018). *Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor*. St.
13 Martin's Press.

14 eu-LISA. (2021). *Contactless Travel in Post-COVID Times: Enhancing the EU Security Ecosystem*.
15 European Union Agency for the Operational Management of Large-Scale IT Systems in
16 the Area of Freedom, Security and Justice (eu-LISA).
17 https://www.eulisa.europa.eu/sites/default/files/documents/IR_2021-06_Report.pdf

18 European Center for Not-For-Profit Law, International Network of Civil Liberties
19 Organizations, & Privacy International. (2022). *Under Surveillance: (Mis)use of Technologies in*
20 *Emergency Responses Global lessons from the Covid-19 pandemic*.
21 <https://privacyinternational.org/sites/default/files/2022-12/ECNL%2C%20INCLO%2C%20PI-COVID-19-Report-Final.pdf>

22 European Commission. (2021, June 3). *Commission proposes a trusted and secure Digital Identity for all*
23 *Europeans*. https://ec.europa.eu/commission/presscorner/detail/en/IP_21_2663

24 European Commission's Directorate-General for Migration and Home Affairs. (2025).
25 *Entry/Exit System (EES). How will the EES work? What is new during the border checks?*
26 https://travel-europe.europa.eu/ees/how-will-ees-work-what-new-during-border-checks?utm_source=chatgpt.com

27 European Parliament. (2024, August 20). *Regulation on automated data exchange for police cooperation*
28 (*Prüm II*). Legislative Train Schedule. <https://www.europarl.europa.eu/legislative-train/theme-promoting-our-european-way-of-life/file-prüm-ii?sid=8301>

29 Friedman, J. (2019). *Power without Knowledge: A Critique of Technocracy*. Oxford University Press.

30 Fussey, P., Davies, B., & Innes, M. (2021). 'Assisted' facial recognition and the reinvention of
31 suspicion and discretion in digital policing. *The British Journal of Criminology*, 61(2), 325–344. <https://doi.org/10.1093/bjc/azaa068>

32 Fussey, P., & Murray, D. (2019). *Independent Report on the London Metropolitan Police Service's Trial of*
33 *Live Facial Recognition Technology*. <http://repository.essex.ac.uk/24946/1/London-Met-Police-Trial-of-Facial-Recognition-Tech-Report-2.pdf>

34 Gebru, T. (2020). Race and Gender. In M. D. Dubber, F. Pasquale, & S. Das (Eds.), *The Oxford*
35 *Handbook of Ethics of AI* (pp. 253–270). Oxford University Press.

36 Government of Canada. (2023, January 30). *Digital credentials*.
37 <https://www.canada.ca/en/government/system/digital-government/digital-government-innovations/digital-credentials.html>

38 Graham, S., & Marvin, S. (2001). *Splintering Urbanism: Networked Infrastructures, Technological*
39 *Mobilities and the Urban Condition*. Routledge.

40 Gritsenko, D., & Wood, M. (2020). Algorithmic governance: A modes of governance approach.
41 *Regulation & Governance*, 16(1), 45–62. <https://doi.org/10.1111/rego.12367>

42 Halpern, O., & Mitchell, R. (2023). *The Smartness Mandate*. MIT Press.

43 Hintz, A., Dencik, L., & Wahl-Jorgensen, K. (2018). *Digital Citizenship in a Datafied Society*. Polity.

44 Isin, E., & Ruppert, E. (2020). The birth of sensory power: How a pandemic made it visible? *Big*
45 *Data & Society*, 7(2). <https://doi.org/10.1177/2053951720969208>

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 Kayali, L. (2023, May 17). Top French court backs AI-powered surveillance cameras for Paris
5 Olympics. *POLITICO*. <https://www.politico.eu/article/french-top-court-backs-olympics-ai-powered-surveillance-cameras/>

6
7 Kitchin, R. (2020). Civil liberties or public health, or civil liberties and public health? Using
8 surveillance technologies to tackle the spread of COVID-19. *Space and Polity*, 1–20.
9 <https://doi.org/10.1080/13562576.2020.1770587>

10 Kitchin, R. (2025). *Critical Data Studies. AN A to Z Guide to Concepts and Methods*. Polity.

11 Lawani, A., Horwu-Christensen, A., Chakargi, M. J., Casucci, N., Castel, O., Uniwona, P.,
12 Coroneo, G., Campaioli, G., Bard, M., Vanguri, S., & Alum, K. (2026). *Dissecting digital
13 ID(e)s: Investigating the infrastructures and imaginaries of digital identity* [Digital Methods
14 Initiative]. University of Amsterdam.
15 <https://www.digitalmethods.net/Dmi/WinterSchool2026DissectingDigitalIDeas>

16 Levitsky, S., & Ziblatt, D. (2018). *How Democracies Die*. Crown Publishing.

17 Liu, C. (2021). Seeing Like a State, Enacting Like an Algorithm: (Re)assembling Contact Tracing
18 and Risk Assessment During the COVID-19 Pandemic. *Science, Technology, & Human
19 Values*, 47(4), 1–28. <https://doi.org/10.1177/01622439211021916>

20 Lupton, D. (2015). *Digital sociology*. Routledge.

21 Lyon, D. (2022). *Pandemic Surveillance*. Polity Press.

22 Madianou, M. (2019). Technocolonialism: Digital Innovation and Data Practices in the
23 Humanitarian Response to Refugee Crises. *Social Media + Society*, 5(3).
24 <https://doi.org/10.1177/2056305119863146>

25 Madianou, M. (2020). A Second-Order Disaster? Digital Technologies During the COVID-19
26 Pandemic. *Social Media + Society*, 6(3). <https://doi.org/10.1177/2056305120948168>

27 Marres, N. (2017). *Digital Sociology*. Polity Press.

28 Masiero, S. (2024). *Unfair ID*. Sage.

29 McFarlane, C. (2021). *Fragments of the City: Making and Remaking Urban Worlds*. University of
30 California Press.

31 Mendonça, R. F., Almeida, V., & Filgueiras, F. (Eds.). (2023). *Algorithmic Institutionalism: The
32 Changing Rules of Social and Political Life*. Oxford University Press.
33 <https://doi.org/10.1093/oso/9780192870070.003.0002>

34 Milan, S. (2020). Techno-solutionism and the standard human in the making of the COVID-19
35 pandemic. *Big Data & Society*, July-December, 1–7.
36 <https://doi.org/10.1177/2053951720966781>

37 Milan, S. (2024a). Afterword: From Number Politics to Infrastructure Politics: Notes on Context
38 and Methods. *The Cambridge Journal of Anthropology*, 42(1), 118–126.
39 <https://doi.org/10.3167/cja.2024.420108>

40 Milan, S. (2024b). Talking to Machines: Knowledge Production and Social Relations in the Age
41 of Governance by Data Infrastructure. In J. Jarke, B. Prietl, S. Egbert, Y. Boeva, H.
42 Heuer, & M. Arnold (Eds.), *Algorithmic Regimes: Methods, Interactions, and Politics* (pp. 229–
43 238). Amsterdam University Press.

44 Milan, S., & Di Salvo, P. (2020, June 8). Four invisible enemies in the first pandemic of a
45 “datafied society.” *Open Democracy*. <https://www.opendemocracy.net/en/can-europe-make-it/four-invisible-enemies-in-the-first-pandemic-of-a-datafied-society/>

46 Milan, S., Taylor, L., Gürses, S., & Veale, M. (2021). Promises made to be broken: Digital vaccine
47 certification as hyperrealistic immunity theatre. *European Journal of Risk Regulation*, 12,
48 382–392. <https://doi.org/10.1017/err.2021.26>

49 Milan, S., & Treré, E. (2020). The rise of the data poor: The COVID-19 pandemic seen from the
50 margins. *Social Media + Society*, July-September, 1–5.
51 <https://doi.org/10.1177/2056305120948233>

52 Milan, S., Treré, E., & Masiero, S. (2021). *COVID-19 from the Margins: Pandemic Invisibilities, Policies
53 and Resistance in the Datafied Society*. Institute of Network Cultures.

54
55
56
57
58
59
60

Mukogosi, J. (2021, April 20). *Vaccine Passports and Pandemic Racism* [Data & Society: Points]. <https://points.datasociety.net/vaccine-passports-and-health-racism-7e494e29bd9b>

Musiani, F. (2013). Network architecture as internet governance. *Internet Policy Review*, 2(4). <https://doi.org/10.14763/2013.4.208>

Mythen, G., & Walklate, S. (2016). Not knowing, emancipatory catastrophism and metamorphosis. *Security Dialogue*, 47(5), 403–419.

Nardi, C. (2020, July 3). “Don’t waste a good crisis”: Experts push governments to create digital ID programs in wake of COVID-19. *National Post*. <https://nationalpost.com/news/politics/dont-waste-a-good-crisis-experts-push-governments-to-create-digital-id-programs-as-covid-19-pushes-digital-transformation>

Newlands, G., Lutz, C., Tamò-Larrieux, A., Villaronga, E. F., Harasgama, R., & Scheitlin, G. (2020). Innovation under pressure: Implications for data privacy during the Covid-19 pandemic. *Big Data & Society*, 7(2). <https://doi.org/10.1177/2053951720976680>

Nissenbaum, H. (1996). Accountability in a computerized society. *Science and Engineering Ethics*, 2(1), 25–42.

Pannett, R. (2022, January 13). German police used a tracing app to scout crime witnesses. Some fear that's fuel for covid conspiracists. *The Washington Post*. <https://www.washingtonpost.com/world/2022/01/13/german-covid-contact-tracing-app-luca/>

Passanti, C. (2025). The division of biometric labor: Relations of production in African voter-identification technologies. In M. Quet, K. Kameda, J. Pourraz, & Y.-M. Rault-Chodankar (Eds.), *Technoscientific globalization from below* (pp. 272–297). Mattering Press.

Pelizza, A. (2020). Processing Alterity, Enacting Europe: Migrant Registration and Identification as Co-construction of Individuals and Polities. *Science, Technology & Human Values*, 45(2), 262–288. <https://doi.org/10.1177/0162243919827927>

Pelizza, A., Milan, S., & Lausberg, Y. (2021). Understanding migrants in COVID-19 counting: Rethinking the data-(in)visibility nexus. *Data & Policy*, 3(E18). <https://doi.org/10.1017/dap.2021.19>

Pellizzoni, L. (2020). The time of emergency. On the governmental logic of preparedness. *Sociologia Italiana*, 16, 39–54. <https://doi.org/10.1485/2281-2652-202016-3>

Pickren, G. (2016). “The global assemblage of digital flow”: Critical data studies and the infrastructures of computing. *Progress in Human Geography*, 42(2), 225–243. <https://doi.org/10.1177/0309132516673241>

Rahman, M. F., Lewis, D., Kuhl, L., Baldwin, A., Ruszczyk, H., Nadiruzzaman, Md., & Mahid, Y. (2024). Managed urban retreat: The trouble with crisis narratives. *Urban Geography*, 45(1), 23–32. <https://doi.org/10.1080/02723638.2023.2228094>

Rawls, J. (1999). *A Theory of Justice. Revised Edition*. Harvard University Press.

Reclaim Your Face. (2020). *The problem. Secretive. Unlawful. Inhumane*. <https://reclaimyourface.eu/the-problem/>

Roe, E. M. (1995). Except-Africa: Postscript to a special section on development narratives. *World Development*, 23(6), 1065–1069. [https://doi.org/10.1016/0305-750X\(95\)00018-8](https://doi.org/10.1016/0305-750X(95)00018-8)

Roitman, J. (2013). *Anti-Crisis*. Duke University Press.

Royo, D. (2025, January 9). The Seven Sins of European Digital Identity (EUDI). *Dyne.Org*. <https://news.dyne.org/the-problems-of-european-digital-identity/>

Ruppert, E., Isin, E., & Bigo, D. (2017). Data Politics. *Big Data & Society, July-December*, 1–7. <https://doi.org/10.1177/20539517177717749>

Sample, I. (2019, June 7). Facial recognition tech is arsenic in the water of democracy, says Liberty. *The Guardian*. <https://www.theguardian.com/technology/2019/jun/07/facial-recognition-technology-liberty-says-england-wales-police-use-should-be-banned>

1
2
3
4 Sato, M. (2021, January 5). Singapore's police now have access to contact tracing data. *MIT*
5 *Technology Review*. <https://www.technologyreview.com/2021/01/05/1015734/singapore->
6 [contact-tracing-police-data-covid/](#)

7 Scheppelle, K. L. (2004). Law in a Time of Emergency: States of Exception and the Temptations
8 of 9/11. *University of Pennsylvania Journal of Constitutional Law*, 1001.
9 <https://scholarship.law.upenn.edu/jcl/vol6/iss5/4>

10 Schoemaker, E., Baslan, D., Pon, B., & Dell, N. (2020). Identity at the margins: Data justice and
11 refugee experiences with digital identity systems in Lebanon, Jordan, and Uganda.
12 *Information Technology for Development*, 1–24.
13 <https://doi.org/10.1080/02681102.2020.1785826>

14 Security Industry Association. (2023, March 27). *Facial Recognition for Access Control: Efficient,*
15 *Convenient and Accurate*. [https://www.securityindustry.org/2023/03/27/facial-](https://www.securityindustry.org/2023/03/27/facial-recognition-for-access-control-efficient-convenient-and-accurate/)
16 [recognition-for-access-control-efficient-convenient-and-accurate/](#)

17 Solarova, S., Podroužek, J., Mesarčík, M., Gavorník, A., & Bieliková, M. (2023). Reconsidering
18 the regulation of facial recognition in public spaces. *AI and Ethics*, 3(2), 625–635.
19 <https://doi.org/10.1007/s43681-022-00194-0>

20 Swauger, S. (2021). Our Bodies Encoded: Algorithmic Test Proctoring in Higher Education. In
21 J. Stommel, C. Friend, & S. M. Morris (Eds.), *Critical Digital Pedagogy*. Press Books.

22 Van Natta, M., Chen, P., Herbek, S., & et al. (2020). The rise and regulation of thermal facial
23 recognition technology during the COVID-19 pandemic. *Journal of Law and the Biosciences*,
24 7(1). <https://doi.org/10.1093/jlb/lsaa038>

25 Wiig, A. (2015). The empty rhetoric of the smart city: From digital inclusion to economic
26 promotion in Philadelphia. *Urban Geography*, 34(4), 535–553.
27 <https://doi.org/10.1080/02723638.2015.1065686>

28 Wiig, A., & Wyly, E. (2016). Introduction: Thinking through the politics of the smart city. *Urban*
29 *Geography*, 37(4), 485–493. <https://doi.org/10.1080/02723638.2016.1178479>

30 Yan, Z. (2020). Unprecedented pandemic, unprecedented shift, and unprecedented opportunity.
31 *Human Behavior and Emerging Technologies*, 2(2), 110–112.
32 <https://doi.org/10.1002/hbe2.192>

33 Yeung, K. (2017). 'Hypernudge': Big Data as a mode of regulation by design. *Information,*
34 *Communication & Society*, 20(1), 118–136.
35 <https://doi.org/10.1080/1369118X.2016.1186713>

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60